A Hypothesis Test Method for Detecting Multifractal Scaling, Applied to Bitcoin Prices

Chuxuan Jiang, Priya Dev, Ross Maller

    Research output: Contribution to journalArticle

    Abstract

    Multifractal processes reproduce some of the stylised features observed in financial time series, namely heavy tails found in asset returns distributions, and long-memory found in volatility. Multifractal scaling cannot be assumed, it should be established; however, this is not a straightforward task, particularly in the presence of heavy tails. We develop an empirical hypothesis test to identify whether a time series is likely to exhibit multifractal scaling in the presence of heavy tails. The test is constructed by comparing estimated scaling functions of financial time series to simulated scaling functions of both an iid Student t-distributed process and a Brownian Motion in Multifractal Time (BMMT), a multifractal processes constructed in Mandelbrot et al. (1997). Concavity measures of the respective scaling functions are estimated, and it is observed that the concavity measures form different distributions which allow us to construct a hypothesis test. We apply this method to test for multifractal scaling across several financial time series including Bitcoin. We observe that multifractal scaling cannot be ruled out for Bitcoin or the Nasdaq Composite Index, both technology driven assets.
    Original languageEnglish
    Pages (from-to)-
    JournalJournal of Risk and Financial Management
    Volume13
    Issue number5
    DOIs
    Publication statusPublished - 2020

    Fingerprint Dive into the research topics of 'A Hypothesis Test Method for Detecting Multifractal Scaling, Applied to Bitcoin Prices'. Together they form a unique fingerprint.

    Cite this