Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data

M.J. Power, Jenny Marlon, Natalie Ortiz, P.J. Bartlein, S.P. Sandy Harrison, Francis E. Mayle, Aziz Ballouche, Richard H.W. Bradshaw, C Carcaillet, C Cardova, S Mooney, P I Moreno, Colin I.C. Prentice, Kirsten Thonicke, Willy Tinner, C Whitlock, Y Zhang, Yan Zhao, Adam A. Ali, Scott R.S. AndersonRuth Beer, Hermann Behling, C Briles, K.J. Brown, Andrea Brunelle, M Bush, P Camill, Guo Qiang Chu, Jim Clark, Daniele Colombaroli, S Connor, A.-L. Daniau, Mark Daniels, John Dodson, E Doughty, M.E. Edwards, W Finsinger, D Foster, J Frechette, Marie -Jose Gaillard, D.G. Gavin, Erika Gobet, Simon Haberle, D J Hallett, P Higuera, Geoffrey Hope, S Horn, J Inoue, Petra Kaltenrieder, L Kennedy, Z.C. Kong, C Larsen, C.J. Long, J Lynch, E.A. Lynch, M McGlone, S Meeks, S Mensing, G Meyer, T Minckley, Jerry Mohr, D.M. Nelson, J New, R Newnham, Roland Noti, Wyatt Oswald, Jen Pierce, Pierre J.H. Richard, Cassandra Rowe, M.F. Sanchez Goni, B.N. Shuman, H Takahara, Jaime Toney, C Turney, D.H. Urrego-Sanchez, C Umbanhowar, Marcus Vandergoes, Boris Vanniere, Elisa Vescovi, M Walsh, Xu King Wang, Nicola Williams, Janet M Wilmshurst, J.H. Zhang

    Research output: Contribution to journalArticle


    Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ?11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ?19,000 to ?17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ?13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ?3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
    Original languageEnglish
    Pages (from-to)887-907
    JournalClimate Dynamics
    Issue number7/8
    Publication statusPublished - 2007


    Dive into the research topics of 'Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data'. Together they form a unique fingerprint.

    Cite this