TY - JOUR
T1 - REPLY TO BARBER: Marginal evidence for taro production in northern New Zealand between 1200 and 1500 CE
AU - Prebble, Matthew
AU - Anderson, Atholl
AU - Augustinus, Paul
AU - Emmitt, Joshua
AU - Fallon, Stewart
AU - Furey, Louise
AU - Holdaway, Simon
AU - Jorgensen, Alex
AU - Ladefoged, Thegn
AU - Matthews, Peter
AU - Meyer, Jean-Yves
AU - Phillipps, Rebecca
AU - Wallace, Rod
AU - Porch, Nicholas
PY - 2020
Y1 - 2020
N2 - We welcome Barber's (1) comments and are grateful for the opportunity to respond. Our study of wetland taro (Colocasia esculenta) gardens during the initial colonization period (ICP) (1200 to 1500 CE) in New Zealand did not overlook the evidence from the Aupouri Peninsula (2-4). We agree that gardens were probably established on mainland New Zealand, within the climate envelope shown in figure 1 of our paper (4), but in areas that lacked large-statured forests at Polynesian arrival. However, the fossil evidence from Motutangi does not meet the 3 criteria for defining ICP taro gardens met in our study of Ahuahu and subtropical French Polynesia: 1) Reliable fossil proxies: We identify pollen, the most reliable fossil proxy for taro (5), but also clusters of small globular orbicular starch grains inside possible parenchyma cells, similar to those described by Horrocks and Barber (2). We doubt whether these can be used to distinguish taro,
at least when using light microscopy to observe
starches from indigenous New Zealand species.
Barber (1) in his letter does not refer to the calcium
oxalate raphides found at Motutangi, originally attributed to taro (2), perhaps because of a critique
of this evidence that highlights the lack of direct
association between fossil proxies (6). We would
support a comprehensive study of starches present
in the New Zealand flora, as has been conducted
for other regions (7), and further exploration of
other fossil proxies for taro and other economic
plants (8), to improve taxonomic identification.
2) High-precision radiocarbon dates: The dates on peat reported from Motutangi, unlike the several dates on identified macrobotanical remains from Ahuahu, do
not meet widely accepted criteria for high-precision
dating, as they contain mixed carbon sources (9).
3) Description of crop ecosystems: Ancient crop ecosystems cannot be described without comprehensive analyses of biological remains from archaeological contexts. At Polynesian arrival, the Motutangi wetlands were dominated by the large-statured conifer Dacrydium cupressinum, requiring repeated firing to establish gardens, and Restionaceae (3), most likely Apodasmia similis, a rush which dominates the margins of regularly flooded estuaries or lakes and outcompetes other plants in nutrient-poor soils (10). This densely spreading rush likely posed difficulties for crop cultivation, although taro may have been competitive if grown in clumps over multiple seasons. The monocotyledon trees, Rhopalostylis and
Cordyline, prevalent in the ICP fossil assemblages
from Ahuahu, but absent from the Motutangi fossil
records, indicate easily cleared forest with immediately workable, nutrient-rich soils. We also identify
fossil pollen and seeds of several additional plants
with economic value including leafy green vegetables (e.g., Rorippa divaricata and Sonchus kirkii),
further indicating cultivation contexts. Furthermore,
ditch irrigation, reticulation, and drainage features,
similar to those described for Motutangi, were recently excavated on Ahuahu, at Waitetoke, with
the fossil assemblages we present in our paper.
Finally, we agree the Little Ice Age may have induced
changes in crop choices and cultivation strategies,
perhaps linked to shifts in fire regimes and enhanced
forest clearance (11), although direct evidence for
such a link is lacking.
AB - We welcome Barber's (1) comments and are grateful for the opportunity to respond. Our study of wetland taro (Colocasia esculenta) gardens during the initial colonization period (ICP) (1200 to 1500 CE) in New Zealand did not overlook the evidence from the Aupouri Peninsula (2-4). We agree that gardens were probably established on mainland New Zealand, within the climate envelope shown in figure 1 of our paper (4), but in areas that lacked large-statured forests at Polynesian arrival. However, the fossil evidence from Motutangi does not meet the 3 criteria for defining ICP taro gardens met in our study of Ahuahu and subtropical French Polynesia: 1) Reliable fossil proxies: We identify pollen, the most reliable fossil proxy for taro (5), but also clusters of small globular orbicular starch grains inside possible parenchyma cells, similar to those described by Horrocks and Barber (2). We doubt whether these can be used to distinguish taro,
at least when using light microscopy to observe
starches from indigenous New Zealand species.
Barber (1) in his letter does not refer to the calcium
oxalate raphides found at Motutangi, originally attributed to taro (2), perhaps because of a critique
of this evidence that highlights the lack of direct
association between fossil proxies (6). We would
support a comprehensive study of starches present
in the New Zealand flora, as has been conducted
for other regions (7), and further exploration of
other fossil proxies for taro and other economic
plants (8), to improve taxonomic identification.
2) High-precision radiocarbon dates: The dates on peat reported from Motutangi, unlike the several dates on identified macrobotanical remains from Ahuahu, do
not meet widely accepted criteria for high-precision
dating, as they contain mixed carbon sources (9).
3) Description of crop ecosystems: Ancient crop ecosystems cannot be described without comprehensive analyses of biological remains from archaeological contexts. At Polynesian arrival, the Motutangi wetlands were dominated by the large-statured conifer Dacrydium cupressinum, requiring repeated firing to establish gardens, and Restionaceae (3), most likely Apodasmia similis, a rush which dominates the margins of regularly flooded estuaries or lakes and outcompetes other plants in nutrient-poor soils (10). This densely spreading rush likely posed difficulties for crop cultivation, although taro may have been competitive if grown in clumps over multiple seasons. The monocotyledon trees, Rhopalostylis and
Cordyline, prevalent in the ICP fossil assemblages
from Ahuahu, but absent from the Motutangi fossil
records, indicate easily cleared forest with immediately workable, nutrient-rich soils. We also identify
fossil pollen and seeds of several additional plants
with economic value including leafy green vegetables (e.g., Rorippa divaricata and Sonchus kirkii),
further indicating cultivation contexts. Furthermore,
ditch irrigation, reticulation, and drainage features,
similar to those described for Motutangi, were recently excavated on Ahuahu, at Waitetoke, with
the fossil assemblages we present in our paper.
Finally, we agree the Little Ice Age may have induced
changes in crop choices and cultivation strategies,
perhaps linked to shifts in fire regimes and enhanced
forest clearance (11), although direct evidence for
such a link is lacking.
U2 - 10.1073/pnas.1919037117
DO - 10.1073/pnas.1919037117
M3 - Article
VL - 117
SP - 1259
EP - 1260
JO - PNAS - Proceedings of the National Academy of Sciences of the United States of America
JF - PNAS - Proceedings of the National Academy of Sciences of the United States of America
IS - 3
ER -